Emergent Tangled Graph Representations for Atari Game Playing Agents
نویسندگان
چکیده
Organizing code into coherent programs and relating different programs to each other represents an underlying requirement for scaling genetic programming to more difficult task domains. Assuming a model in which policies are defined by teams of programs, in which team and program are represented using independent populations and coevolved, has previously been shown to support the development of variable sized teams. In this work, we generalize the approach to provide a complete framework for organizing multiple teams into arbitrarily deep/wide structures through a process of continuous evolution; hereafter the Tangled Program Graph (TPG). Benchmarking is conducted using a subset of 20 games from the Arcade Learning Environment (ALE), an Atari 2600 video game emulator. The games considered here correspond to those in which deep learning was unable to reach a threshold of play consistent with that of a human. Information provided to the learning agent is limited to that which a human would experience. That is, screen capture sensory input, Atari joystick actions, and game score. The performance of the proposed approach exceeds that of deep learning in 15 of the 20 games, with 7 of the 15 also exceeding that associated with a human level of competence. Moreover, in contrast to solutions from deep learning, solutions discovered by TPG are also very ‘sparse’. Rather than assuming that all of the state space contributes to every decision, each action in TPG is resolved following execution of a subset of an individual’s graph. This results in significantly lower computational requirements for model building than presently the case for deep learning.
منابع مشابه
General Video Game Playing
One of the grand challenges of AI is to create general intelligence: an agent that can excel at many tasks, not just one. In the area of games, this has given rise to the challenge of General Game Playing (GGP). In GGP, the game (typically a turn-taking board game) is defined declaratively in terms of the logic of the game (what happens when a move is made, how the scoring system works, how the...
متن کاملDeep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning
The combination of modern Reinforcement Learning and Deep Learning approaches holds the promise of making significant progress on challenging applications requiring both rich perception and policy-selection. The Arcade Learning Environment (ALE) provides a set of Atari games that represent a useful benchmark set of such applications. A recent breakthrough in combining model-free reinforcement l...
متن کاملVisualizing and Understanding Atari Agents
Deep reinforcement learning (deep RL) agents have achieved remarkable success in a broad range of game-playing and continuous control tasks. While these agents are effective at maximizing rewards, it is often unclear what strategies they use to do so. In this paper, we take a step toward explaining deep RL agents through a case study in three Atari 2600 environments. In particular, we focus on ...
متن کاملLearning to predict where to look in interactive environments using deep recurrent q-learning
Bottom-Up (BU) saliency models do not perform well in complex interactive environments where humans are actively engaged in tasks (e.g., sandwich making and playing the video games). In this paper, we leverage Reinforcement Learning (RL) to highlight task-relevant locations of input frames. We propose a soft attention mechanism combined with the Deep Q-Network (DQN) model to teach an RL agent h...
متن کاملPlaying FPS Games with Deep Reinforcement Learning
Advances in deep reinforcement learning have allowed autonomous agents to perform well on Atari games, often outperforming humans, using only raw pixels to make their decisions. However, most of these games take place in 2D environments that are fully observable to the agent. In this paper, we present the first architecture to tackle 3D environments in first-person shooter games, that involve p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017